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Abstract
Network tra�c prediction is an important tool in managing
network congestion, resources and security. It predicts future
network tra�c �ows based on previous data, using either
statistical time-series or machine learning approaches. E�-
cient prediction can improve the quality of service and lower
operating costs for network service providers. Existing liter-
ature shows that deep learning models learn network tra�c
patterns more e�ciently and predict more accurately than
traditional prediction models. Of these approaches, Long
Short Term Memory (LSTM) appears to be the most accu-
rate method. However, there is little research on the com-
putational resources required to run deep learning models,
and whether they can be optimised for large networks. This
paper aims to determine whether a standard LSTM is an
appropriate architecture for network tra�c prediction on
the South African Research and Education Network (SAN-
ReN), or whether applying a stacked or bidirectional LSTM
yields more accurate results. Furthermore, this paper will
evaluate whether these evolutionary approaches are viable
for less-resourced systems and whether they perform well
on less intensive network tra�c.

CCS Concepts: • Computing methodologies ! Unsu-
pervised learning; Neural networks; • Networks !
Network performance analysis.

Keywords: Long-Short Term Memory, Mean Squared Error,
Network Tra�c Prediction, Stacked Long-Short Term Mem-
ory, Bidirectional Long-Short Term Memory, Computational
Complexity

1 Introduction
In today’s world, the internet and its applications have be-
come a vital tool for all types of users. As more individuals
are gaining access to the internet for the �rst time, and oth-
ers increasing their usage, networks are having to manage
their limited bandwidth e�ectively. COVID-19 has caused
a signi�cant surge in internet tra�c [7]. Accurate network
tra�c prediction - provided by models that predict future
tra�c �ows and �uctuation - would help network providers
to alleviate congestion and load management issues. Pre-
dicting network tra�c in the short term aids in dynamic

resource allocation, while longer-term prediction provides
insight into how a service provider may improve their net-
work capacity and performance [14]. Deep learning models
have become a popular approach to time series forecasting,
which includes network tra�c data. An analysis of existing
literature shows deep learning models consistently outper-
form traditional statistical and machine learning methods,
and that Recurrent Neural Networks and their subsets are
now the gold standards for network tra�c prediction.

SANReN is an organised network of education and re-
search institutions within South Africa [1]. Within the net-
work, there are time-series tra�c data �ows that can be too
large to be adequately monitored by traditional data analysis
techniques. Hence, a deep learning approach is proposed
as an alternative method to perform network tra�c analy-
sis and prediction for SANReN. The objective of this paper
is to critically evaluate deep learning approaches to deter-
mine the best model for network tra�c prediction on the
SANReN. This paper also investigates the computational
resources required for each implementation and concludes
on the trade-o�s between computation time and prediction
accuracy - speci�cally when considered for the SANReN use
case.

2 Problem Statement
It is important to consider the constraints and resources of a
networkwhen evaluating a candidate model for network traf-
�c prediction. Both computational complexity and run time
can be a limiting factor for less-resourced networks, which
may result in di�erent network tra�c prediction models
being better suited for them. Existing literature on network
tra�c volume predictors has shown that neural networks -
particularly Long Short Term Models (LSTM) - provide im-
provements in accuracy and performance over traditional
statistical prediction methods. Furthermore, LSTM deriva-
tive models, such as the stacked LSTM and bilateral LSTM,
have out-performed baseline LSTMs.

The computational feasibility of LSTMand LSTM-derivative
prediction models will be investigated. These models will
be replicated and trained on new SANReN data sets, to fur-
ther assess their performance against traditional statistical
models and conventional LSTM.



2.1 Research Questions
1. How does the SANReN tra�c data vary with time

and day in relation to the South African university
calendar?

2. Which of the LSTM architectures, baseline, bilateral
or stacked, provides the highest prediction accuracy,
subject to network constraints?

3. What is the computational cost of di�erent LSTM ar-
chitectures given a required level of accuracy?

3 Related Work
Network tra�c prediction approaches have been formalized
in a multitude of past studies. Furthermore, the growth of the
internet and its networks have accelerated research, with
deep learning techniques emerging as the prevalent tool
for network tra�c prediction. Historically, researchers used
statistical prediction techniques such as ARIMA and Holt-
Winters models, but deep learning models - particularly the
LSTM - have shown to out-perform those. A Recurrent Neu-
ral Network can su�er from the vanishing gradient problem,
which occurs when the network is unable to send back useful
gradient information from the output layers to those layers
that are more shallow. If this occurs, the RNN loses its ability
to consider long term dependencies in calculations [4]. It is
for this reason that Krishnaswamy et al. [12] propose that
using an RNN is unsuitable for network tra�c prediction,
suggesting that an LSTM should be used for time-series pre-
dictions, to eliminate the vanishing gradient problem.

An LSTM is a type of RNN, which is formed by adding
a short and long term memory unit to an RNN [9]. The
addition of memory units allows the network to deal with
the correlation of time series in the short and long term,
and store dependencies that it deems important from earlier
epochs of training [19]. Additionally, to control the use of his-
torical information, the model uses an in, forget and out gate.

Krishnaswamy et al. [12] discussed the di�erences be-
tween using a Simple and Stacked LSTM learning approach.
Stacked LSTM’s were more accurate in predicting future
tra�c �ows compared to traditional LSTM architectures,
but at the cost of a higher computational complexity as a
result of added LSTM layers. There is a a trade o� here, but
the choice between accuracy and computational e�ciency
allows network operators to decide what is more practical
for their needs. In their training, Krishnaswamy et al. [12]
noted that adding extra LSTM layers did not cause a no-
ticeable change in accuracy. In fact, the baseline LSTM had
the lowest Mean Squared Error overall. One limitation that
will be investigated further in this project is whether these
LSTM algorithms perform as well for smaller tra�c
volumes that one may see on an education network, as the
results above were for links of capacity of over 100GB/s.

Cui et al. [8] investigated the use of a bidirectional LSTM
for forecasting network tra�c. A bidirectional LSTM (BDL-
STM) is one that runs the input from both past to future, and
future to past. This approach preserves information from
the future and, using two hidden states combined, it is is
able in any point in time to preserve information from both
past and future [17]. Cui et al. [8] found that a stacked BDL-
STM achieved a more accurate prediction. Importantly, the
training times that they observed indicate that a BDLSTM
is nearly double the training time of a regular LSTM.
To our knowledge there was no mention of prediction times
for a stacked BDLSTM, so we will investigate whether this
increased prediction accuracy comes at the cost of a higher
computational time compared to a stacked LSTM and a BDL-
STM.

4 Procedures and Methods
4.1 Network Tra�c Data
The �rst step in conducting our research is to obtain time-
series data from SANReN. This data will be used to train, val-
idate and test the neural networks that this paper evaluates.
The data set consists of a multitude of �les, each describing
tra�c �ows on the network over a period of time. The SAN-
ReN data has been placed on a data store at the University
of Cape Town, which we will access remotely.

4.2 Data Preprocessing
To use the SANReN dataset, the raw data has to be extracted
and cleaned for a neural network model [2]. This preprocess-
ing step will transform raw data into input for each of the
neural network models. This section describes the prepro-
cessing methods that will be applied.

4.3 Data Engineering
The network tra�c received from SANReN is already stored
in CSV format, with labels. The data will be checked for
missing values, if any exist, these values will be removed.
Sometimes categorical features are represented numerically,
however, this is not recommended [3] and one hot encoding
will be used to represent such data correctly. Additionally, to
capture the relationship between university schedules and
network tra�c data, day of the week �elds will be added
to the data set. These �elds will be encoded so that all of
the �ows on a Monday have a Monday value equal to 1,
whilst �ows not on Monday will have a Monday �eld equal
to 0. This will be applied so that all days of the week are
represented.
Additionally, some of the features in the provided data

may also be highly correlated. This will be examined using
a correlation matrix, and some �elds may be removed to
avoid multicollinearity. Multicolinearaity may a�ect how the
LSTM models weigh di�erent inputs, and so it is advisable
to remove highly correlated variables [3]. The data will also
be examined for outliers. However, since we want the LSTM
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to be able to predict burst �ows, those that do not follow the
long-term temporal pattern, outliers will not be removed.

4.4 Preliminary Statistical Analysis
To provide insight into the underlying patterns, correlations
and composition of the SANReN data, a preliminary statis-
tical analysis will be performed. This will include a data
description of the SANReN data, relationships of interest
such as volume versus hour and volume versus hour, and
a descriptive statistics table. Linear regression models will
also be implemented to further describe the patterns in the
data. This will be done using pandas - a Python library for
data analysis - and NumPy - a Python library for high-level
mathematics.

4.5 Establishing an LSTM Baseline
A minimum level of prediction performance must be de-
�ned against which other models can be assessed. To do this,
we will implement a traditional LSTM model as the deep
learning performance baseline. Existing literature provides
evidence that LSTM models are more accurate general re-
current neural networks [10, 18] than traditional statistical
prediction models - such as ARIMA [15]. Therefore an initial
baseline will not be implemented for the traditional LSTM.
However, evidence to support traditional LSTM’s superior
performance will be presented. The traditional LSTM itself
will set the bar for the stacked-LSTM and bilateral LSTM
models. Furthermore, because more sophisticated LSTM ar-
chitectures - the stacked and bilateral LSTM - are being
implemented, we have decided to evaluate them against
their simpler counterpart. The stacked and bilateral models
will have to exhibit a statically signi�cant improvement in
prediction accuracy or computational cost to justify their
additional complexity.

4.5.1 Long-term Temporal Patterns. Time series data
exhibits sequential pattern behaviour. Essentially, a new data
observation is dependent on past values in the time series.
The LSTM model is designed to capture these long-term
temporal dependencies [15], and has therefore been selected
to predict sequential patterns in the SANReN data. LSTM
models are ideal for this task because of the structure of
their memory units. Each unit gives the model the ability to
consider its input, and then either keep existing memory or
overwrite it with new information [10]. This capacity allows
extremely long-term temporal dependencies to be captured
by the model, whereas simpler RNNs are unable to capture
these trends [15]. Additionally, LSTMs have become the high-
performing standard for network tra�c prediction [10, 11, 15,
18] and so it is sensible to implement a traditional LSTM for
this project. Bidirectional and Stacked LSTM architectures
are more suited to dealing with long-term temporal patterns
[5] [6], since they both include more layers than a traditional
LSTM.

Network tra�c data may also be provided to a neural net-
work to predict when a burst in tra�c volume will occur,
rather than to forecast a sequential pattern in the time-series
data [13]. Burst tra�c is de�ned as a prolonged, uninter-
rupted transfer of data from one device to another. When
the sequential pattern of the data is non-linear, and burst
tra�c is also present, neural network models have shown to
be 78% more accurate than traditional statistical prediction
methods [18]. Therefore, this paper will aim to use a large
sample of non-linear SANReN data with burst �ow activity.

4.6 Hyper-parameters
Hyper-parameters in deep learning are parameters that are
de�ned before a model is trained. Therefore, these parame-
ters cannot be adjusted by the model as it learns more about
the dataset. Examples of hyper-parameters in an LSTM in-
clude thememory unit topology, the train-test split, the learn-
ing rate of the model and the number of training epochs it
is given to train. In a neural network, a training epoch is
de�ned as one full cycle of data through the model. Since
hyper-parameters such as the training epochs are prede-
�ned, there is motivation to alter these values to optimise
the performance of each model.

4.7 Model Feasibility Evaluation
In order to evaluate the accuracy of the LSTM models that
will be developed, a training and test dataset will be created.
The LSTM architectures will be trained using the training
dataset, and subsequently evaluated by testing them using
the test dataset. The results of testing the models will enable
the comparison between the models, and provide insight
into how well the model can make a prediction on new data.
The metric that will be used for predictive accuracy is Mean
Squared Error (MSE), shown below:
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The second metric by which the models will be evaluated
is their computational complexity. This will be measured
in terms of time taken and the amount of memory used to
predict once the model has been trained. Python provides
a library, tracemalloc, which allows a section of code to be
evaluated in terms of its memory use. Since thesemodels may
be deployed on di�erent systems, for real-time predictions,
minimizing the time a prediction takes is important.

4.8 Implementing LSTM and its Derivatives
This paper will use the Keras API running over Tensor�ow
to implement a LSTM, an stacked-LSTM and bilateral LSTM.
Keras has been selected as it is a high-level Python API for
Tensor�ow that provides scalability and accessible resources
and documentation. Scalability is particularly important for
the SANReN use-case, as the LSTM models will only be
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tested on subsets of SANReN’s network tra�c data. There-
fore, the implemented LSTM models should be able to scale
and be trained on larger subsets of NeN data everywhere. By
building models and data pipelines using existing libraries,
the complexity of model implementation is reduced, and
more focus can be placed on hyper-parameter turning and
selecting a model that �ts within the SANReN constraints.

4.8.1 Baseline LSTM. A baseline LSTMwill be developed
and implemented using Keras. The number of layers, and
other hyper-parameters will be changed in order to produce
the highest accuracy.

4.8.2 Stacked-LSTM. A stacked LSTM will be developed
and implemented using Keras. The baseline LSTM will be
built upon, by adding additional LSTM layers to the model.
An LSTM layer above provides a sequence output rather than
a single value output to the LSTM layer below, and therefore
we will need to adjust the adjust the output of the previous
layer to output a 3-D array for input in the next layer [5].

5 Ethical, Professional and Legal Issues
This research uses network data tra�c that is not linked to
any individual user. The ethical considerations of this project
are therefore minimal, and there is no requirement to appear
in front of the Ethics Committee. There are no legal issues
relating to this project since the data is anonymised. The
implementation done will be using TensorFlow, an open-
source Machine Learning library created and maintained by
Google. Any code developed will be open-source and the
�nal paper is published it will be under the creative commons
licence used by the University of Cape Town.

6 Anticipated Outcomes
In this section, the anticipated outcomes are discussed. Ma-
jor results, including the expected impact and key success
factors will also be looked at.

6.1 System
A data processing pipeline will be programmed to automate
the preparation of data for the models. The data pipeline will
be used to prepare SANReN data for training and testing
LSTM models, and will also implement the preprocessing
steps described earlier. The pipeline will take SANReN data
and clean it, before processing it into engineered data. The
engineered data is then ready to be split into training, vali-
dating and testing sets for each LSTM model.
The system will also include a programmed preliminary

data analysis, as described in the Preliminary Statistical Anal-
ysis section. This will be automated in Python, and will out-
put graphs and tables that assist in describing the nature of
the data.
By the end of this project, three LSTM models will have

been trained, tested and evaluated for the SANReN use-case.

Given inputs from the data pipeline, each model will be able
to predict network tra�c data. The program will be modular,
so as to allow a user of the system to predict network tra�c
for any network, provided that the initial input is correctly
formatted.

We will also determine the relative performance of these
models based on accuracy and computational e�ciency,
which will allow us to determine which LSTM model or
models will be best suited for SANReN, and NeNs in general.

6.2 Expected Impact of Project
Literature suggests that LSTM is a more accurate predictor
of future network tra�c when compared to an RNN. We
therefore expect our �ndings to be the same. Our two results,
computational complexity and accuracy will allow for a net-
work service provider to decide what prediction approach is
more suited to their needs. Therefore, the impact of the prod-
uct will fall primarily on NeNs. If an LSTM is found to be an
accurate, computationally viable predictor for the SANReN
use case, then NeNs will be able to implement LSTMs as
network tra�c predictors in order to manage network load,
security and resource use. Additionally, if LSTMs are found
to be su�ciently computationally cheap, then the applica-
tion of them as a network tra�c predictor could be applied
to additional low-resource networks.

6.3 Key Success Factors
In order to determine whether the deep learning approaches
are an accurate method for predicting future network tra�c,
they will need to be evaluated on a test dataset. TensorFlow
has built in accuracy metrics, which will allow for the com-
parison between approaches.

• Successful implementation of an LSTM, Stacked LSTM
and BDLSTM to predict network tra�c

• Preliminary statistical analysis of dataset to provide
general overview of dataset

• De�nitive results that allow conclusion on most accu-
rate LSTM approach to network tra�c prediction

• Recommendation that can be made based on require-
ments by network: Highest accuracy, lowest computa-
tional complexity

7 Project Plan
7.1 Required Resources
The data for this project will be provided by the SouthAfrican
National Research and Education Network. There is no spe-
ci�c computational requirement for this project, but using a
Graphics Processing Unit for training the deep learning mod-
els will be bene�cial [16]. The code will be run on Google
Colaboratory, and will make use of TensorFlow library for
the deep learning algorithms.
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Table 1. Deliverables of this project and their associated due
dates

Due Date Deliverable
4 June Literature Review
24 June Project Proposal
9 July Proposal Presentation Uploaded
30 July Revised Project Proposal (after sta� feedback)
10-13 August Initial Software Feasibility Demonstration
6 September Final Complete Draft of Paper
17 September Final Submission of Project Paper
20 September Final Submission of Project Code
4-8 October Final Project Demonstration
11 October Poster Due
18 October Web Page
TBA Open Evening

7.2 Risks
A risk matrix has been developed to capture the issues that
could arise during the project life cycle. These risks have
mitigation strategies and ways to monitor them, as well as
ways to manage the risks should they be realised. The full
risk matrix table can be seen in Appendix B.

7.3 Timeline
The timeline for this project begins with the project pro-
posal, from the 1st of June onward, and culminates with a
completed project web page - due on the 18th of October. As
shown in the Gantt Chart, preprocessing and baselining will
be completed as a team, thereafter each team member will
work concurrently on an individual LSTM architecture.Work
on the project papers will begin early in the development
process, to allow for ample time for feedback, revisions and
developments. The full detailed breakdown of the project
timeline is in the Gantt Chart in Appendix A.

7.4 Milestones and Deliverables
These milestones are set out by the Computer Science De-
partment of the University of Cape Town.

• Literature Review - A critical analysis of past work in
the �eld, deep learning and time series approaches to
network tra�c prediction

• Project Proposal - Outlining project plan, deliverables
and aims

• Proposal Presentation - Presentation to department
motivating importance of project and feasibility

• Initial Software Feasibility Demonstration - Proof of
concept, basic workings of project

• Final Project Paper and Project Code - Upload �nal
paper including results and conclusions comparing the
LSTM approaches to network tra�c prediction, code
including implementation of project

• Final Project Demonstration - Demonstration to de-
partment that project works, and results observed are
consistent with �nal paper

• Poster - Overview of project and �ndings
• Web Page - Web page detailing project components
and all deliverables

7.5 Work Allocation
This project work will be distributed between Antony and
Justin. Together, the two will apply data preprocessing to the
raw PCAP data, to convert it into a format that is suitable
for training deep learning models. Antony will carry out the
preliminary statistical analysis on the data, which has been
discussed in Section 4.4, as well as developing the stacked-
LSTM implementation. Justin will develop the LSTM which
will be used as a benchmark to compare di�erent LSTM ap-
proaches, as well as the bidirectional LSTM implementation.
The associated model building, training, hyperparameter
tuning, testing and evaluation of each LSTM implementation
will thus be done individually. While the test and training
data will be the same for both Antony and Justin, each one
will be individually evaluating the LSTM variants that they
develop using the same metrics. Once complete, they will
work together, comparing results in order to conduct the
comparisons between the architectures in terms of perfor-
mance and resource utilization.
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